Search results for "Bounded operator"

showing 10 items of 60 documents

Frames and weak frames for unbounded operators

2020

In 2012 G\u{a}vru\c{t}a introduced the notions of $K$-frame and of atomic system for a linear bounded operator $K$ in a Hilbert space $\mathcal{H}$, in order to decompose its range $\mathcal{R}(K)$ with a frame-like expansion. In this article we revisit these concepts for an unbounded and densely defined operator $A:\mathcal{D}(A)\to\mathcal{H}$ in two different ways. In one case we consider a non-Bessel sequence where the coefficient sequence depends continuously on $f\in\mathcal{D}(A)$ with respect to the norm of $\mathcal{H}$. In the other case we consider a Bessel sequence and the coefficient sequence depends continuously on $f\in\mathcal{D}(A)$ with respect to the graph norm of $A$.

42C15 47A05 47A63 41A65Atomic systemDensely defined operatorAtomic system010103 numerical & computational mathematics01 natural sciencesBounded operatorCombinatoricssymbols.namesakeReconstruction formulaSettore MAT/05 - Analisi MatematicaFOS: MathematicsComputational Science and EngineeringUnbounded operatorA-frame0101 mathematicsMathematicsApplied MathematicsHilbert spaceGraphFunctional Analysis (math.FA)Mathematics - Functional Analysis010101 applied mathematicsComputational MathematicssymbolsWeak A-framesBessel functionAdvances in Computational Mathematics
researchProduct

Algebras of unbounded operators and physical applications: a survey

2009

After a historical introduction on the standard algebraic approach to quantum mechanics of large systems we review the basic mathematical aspects of the algebras of unbounded operators. After that we discuss in some details their relevance in physical applications.

AlgebraAlgebras of unbounded operatorComputer scienceComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATIONAlgebraic dynamicFOS: Physical sciencesStatistical and Nonlinear PhysicsRelevance (information retrieval)Mathematical Physics (math-ph)Algebraic numberQuantum systems with infinite degrees of freedomSettore MAT/07 - Fisica MatematicaMathematical Physics
researchProduct

O* - Dynamical Systems and * - Derivations of Unbounded Operator Algebras

1999

A spatial theory is developed for * - derivations of an algebra of unbounded operators, in terms of the concept of O*-dynamical systems. Three notions of spatiality emerge, depending on the nature of the corresponding generator. Special emphasis is put on O*-dynamical systems generated by one-parameter groups of *-automorphisms and their *-derivations.

AlgebraUnbounded operatorPure mathematicsSpatial theoryDynamical systems theoryGeneral MathematicsAlgebra over a fieldGenerator (mathematics)MathematicsMathematische Nachrichten
researchProduct

Singular integrals on regular curves in the Heisenberg group

2019

Let $\mathbb{H}$ be the first Heisenberg group, and let $k \in C^{\infty}(\mathbb{H} \, \setminus \, \{0\})$ be a kernel which is either odd or horizontally odd, and satisfies $$|\nabla_{\mathbb{H}}^{n}k(p)| \leq C_{n}\|p\|^{-1 - n}, \qquad p \in \mathbb{H} \, \setminus \, \{0\}, \, n \geq 0.$$ The simplest examples include certain Riesz-type kernels first considered by Chousionis and Mattila, and the horizontally odd kernel $k(p) = \nabla_{\mathbb{H}} \log \|p\|$. We prove that convolution with $k$, as above, yields an $L^{2}$-bounded operator on regular curves in $\mathbb{H}$. This extends a theorem of G. David to the Heisenberg group. As a corollary of our main result, we infer that all …

Applied MathematicsGeneral Mathematics42B20 (primary) 43A80 28A75 35R03 (secondary)Metric Geometry (math.MG)Singular integralLipschitz continuityuniform rectifiabilityHeisenberg groupFunctional Analysis (math.FA)ConvolutionBounded operatorMathematics - Functional AnalysisCombinatoricsMathematics - Metric GeometryMathematics - Classical Analysis and ODEsBounded functionClassical Analysis and ODEs (math.CA)FOS: MathematicsHeisenberg groupsingular integralsBoundary value problemKernel (category theory)MathematicsJournal de Mathématiques Pures et Appliquées
researchProduct

Norm estimates for operators from Hp to ℓq

2008

Abstract We give upper and lower estimates of the norm of a bounded linear operator from the Hardy space H p to l q in terms of the norm of the rows and the columns of its associated matrix in certain vector-valued sequence spaces.

Applied MathematicsMathematical analysisMatrix normSchatten class operatorHardy spaceBounded operatorCombinatoricssymbols.namesakesymbolsSchatten normCondition numberOperator normAnalysisDual normMathematicsJournal of Mathematical Analysis and Applications
researchProduct

MR2986428 Lebedev, Leonid P.(CL-UNC); Vorovich, Iosif I.; Cloud, Michael J. Functional analysis in mechanics. Second edition. Springer Monographs in …

2014

Banach spaces Hilbert spaces bounded operators.Settore MAT/05 - Analisi Matematica
researchProduct

Bounded Bi-ideals and Linear Recurrence

2013

Bounded bi-ideals are a subclass of uniformly recurrent words. We introduce the notion of completely bounded bi-ideals by imposing a restriction on their generating base sequences. We prove that a bounded bi-ideal is linearly recurrent if and only if it is completely bounded.

CombinatoricsCombinatorics on wordsMathematics::Commutative AlgebraBounded setBounded functionBase (topology)Bounded inverse theoremBounded operatorMathematics2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing
researchProduct

Estimating norms inC*-algebras of discrete groups

1976

LetG be a discrete group, letK be a finite subset ofG and let χ K be the characteristic function ofK. Then χ K acts by convolution as a bounded operator onL2(G). We will prove that the norm |||χ K ||| of this operator always satisfies the following estimate: $$|||\chi _{\rm K} |||^2 \leqq k + 2\sqrt {w\left( {k - 1} \right)\left( {k - w} \right)} + \left( {k - 2} \right)\left( {k - w} \right)$$ . Here .

CombinatoricsDiscrete mathematicsCharacteristic function (probability theory)Discrete groupGeneral MathematicsOperator (physics)ConvolutionBounded operatorMathematicsMathematische Annalen
researchProduct

Browder's theorems through localized SVEP

2005

A bounded linear operator T ∈ L(X) on aBanach space X is said to satisfy “Browder’s theorem” if the Browder spectrum coincides with the Weyl spectrum. T ∈ L(X) is said to satisfy “a-Browder’s theorem” if the upper semi-Browder spectrum coincides with the approximate point Weyl spectrum. In this note we give several characterizations of operators satisfying these theorems. Most of these characterizations are obtained by using a localized version of the single-valued extension property of T. In the last part we shall give some characterizations of operators for which “Weyl’s theorem” holds.

CombinatoricsMathematics::Functional AnalysisOperator (computer programming)General MathematicsSpectrum (functional analysis)PropertyOperatorExtension (predicate logic)Space (mathematics)theorem holdsMathematics::Algebraic TopologyBounded operatorMathematics
researchProduct

Weak commutation relations of unbounded operators and applications

2011

Four possible definitions of the commutation relation $[S,T]=\Id$ of two closable unbounded operators $S,T$ are compared. The {\em weak} sense of this commutator is given in terms of the inner product of the Hilbert space $\H$ where the operators act. Some consequences on the existence of eigenvectors of two number-like operators are derived and the partial O*-algebra generated by $S,T$ is studied. Some applications are also considered.

CommutatorPure mathematicsunbounded operatorsCommutation relationHilbert spaceMathematics - Operator AlgebrasFOS: Physical sciencesStatistical and Nonlinear PhysicsMathematical Physics (math-ph)symbols.namesakeSettore MAT/05 - Analisi MatematicaProduct (mathematics)Linear algebraFOS: MathematicssymbolsCommutationOperator Algebras (math.OA)Settore MAT/07 - Fisica MatematicaEigenvalues and eigenvectorsMathematical PhysicsMathematics
researchProduct